

$\begin{array}{c} \textbf{0.5} \ \Omega \ \textbf{CMOS} \ \textbf{1.65} \ \textbf{V} \ \textbf{TO} \ \textbf{3.6} \ \textbf{V} \\ \textbf{4-Channel Multiplexer} \end{array}$

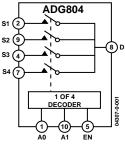
ADG804

FEATURES

0.5 Ω typical on resistance 0.8 Ω maximum on resistance at 125°C 1.65 V to 3.6 V operation Automotive temperature range: -40°C to +125°C High current carrying capability: 300 mA continuous Rail-to-rail switching operation Fast switching times <25 ns Typical power consumption (<0.1 μ W)

APPLICATIONS

MP3 players Power routing Battery-powered systems PCMCIA cards Cellular phones Modems Audio and video signal routing Communication systems


GENERAL DESCRIPTION

The ADG804 is a low voltage 4-channel CMOS multiplexer comprising four single channels. This device offers ultralow on resistance of less than 0.8 Ω over the full temperature range. The digital inputs can handle 1.8 V logic with a 2.7 V to 3.6 V supply.

The ADG804 switches one of four inputs to a common output, D, as determined by the 3-bit binary address lines, A0, A1, and EN. A Logic 0 on the EN pin disables the device. The ADG804 has break-before-make switching.

The ADG804 is fully specified for 3.3 V, 2.5 V, and 1.8 V supply operation. It is available in a 10-lead MSOP package.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

PRODUCT HIGHLIGHTS

- 1. $<0.8 \Omega$ over full temperature range of -40° C to $+125^{\circ}$ C.
- 2. Single 1.65 V to 3.6 V operation.
- 3. Operational with 1.8 V CMOS logic.
- 4. High current handling capability (300 mA continuous current at 3.3 V).
- 5. Low THD + N (0.02% typ).
- 6. Small 10-lead MSOP package.

Rev. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Specifications	3
Absolute Maximum Ratings	6
ESD Caution	6
Pin Configurations	7

Typical Performance Characteristics	8
Test Circuits	11
Outline Dimensions	13
Ordering Guide	13

REVISION HISTORY

Revision 0: Initial Version

SPECIFICATIONS

 V_{DD} = 2.7 V to 3.6 V, GND = 0 V, unless otherwise noted.¹

Table 1.

Parameter	+25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH		105 4			
Analog Signal Range			0 V to V _{DD}	v	
On Resistance (R_{ON})	0.5			Ω typ	$V_{DD} = 2.7 \text{ V}; V_s = 0 \text{ V} \text{ to } V_{DD}, I_s = 10 \text{ mA}; Figure 18$
Of hesistance (hon)	0.65	0.75	0.8	Ωmax	$v_{DD} = 2.7 v, v_{S} = 0 v to v_{DD}, is = 10 mA, right e 10$
On Resistance Match between	0.03	0.75	0.0	Ωtyp	$V_{DD} = 2.7 \text{ V}; \text{ V}_{\text{S}} = 0.65 \text{ V}, \text{ I}_{\text{S}} = 10 \text{ mA}$
Channels (ΔR_{ON})	0.04	0.075	0.08	Ω max	$v_{DD} = 2.7 v, v_{S} = 0.05 v, I_{S} = 10 IIIA$
On Resistance Flatness (R _{FLAT(ON)})	0.1	0.075	0.08	Ωtyp	$V_{DD} = 2.7 \text{ V}; \text{ V}_{\text{S}} = 0 \text{ V} \text{ to } \text{ V}_{DD},$
Of hesistance hatness (NFLAT(ON))	0.1	0.15	0.16	Ω max	$V_{BB} = 2.7 \text{ v}, \text{ v}_{S} = 0 \text{ v}$ to V_{BB} , Is = 10 mA
LEAKAGE CURRENTS		0.15	0.10	12 1110X	$V_{DD} = 3.6 V$
Source Off Leakage Is (OFF)	±0.1			n A tun	$V_{DD} = 3.0 V$ $V_{S} = 0.6 V/3.3 V; V_{D} = 3.3 V/0.6 V;$ Figure 19
Source of Leakage is (OFF)	±0.1 ±1			nA typ nA max	$v_{\rm S} = 0.0 v_{\rm 7} 3.3 v_{\rm 7} v_{\rm B} = 3.3 v_{\rm 7} 0.0 v_{\rm 7}$ Figure 19
Drain Off Leakage I _D (OFF)	±0.1				$V_{s} = 0.6 V/3.3 V; V_{D} = 3.3 V/0.6 V;$ Figure 19
Drain On Leakage (OFF)	±0.1 ±1			nA typ nA max	$v_{\rm S} = 0.0 v/3.5 v, v_{\rm D} = 3.5 v/0.0 v, Figure 19$
Channel On Leakage I _D , I _S (ON)	±1 ±0.1			nA max nA typ	$V_{s} = V_{D} = 0.6 V \text{ or } 3.3 V$; Figure 20
Channel On Leakage ID, IS (ON)	±0.1 ±1			nA typ nA max	$v_{\rm S} = v_{\rm D} = 0.0$ v or 5.5 v, Figure 20
DIGITAL INPUTS	ΞI			TIA IIIdX	
Input High Voltage, VINH			2	V min	
Input Low Voltage, VINH			2 0.8	V max	
	0.005		0.0		V _{IN} = V _{INL} or V _{INH}
Input Current I_{INL} or I_{INH}	0.005		±0.1	μA typ	$\mathbf{v}_{\text{IN}} = \mathbf{v}_{\text{INL}} \text{ Of } \mathbf{v}_{\text{INH}}$
	4		±0.1	µA max	
CIN, Digital Input Capacitance	4			pF typ	
DYNAMIC CHARACTERISTICS ²	24			in a frain	
transistion	24 30	32	35	ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$ V _s = 1.5 V/0 V; Figure 21
	23	52	22	ns max	$v_{s} = 1.5 v/0 v$; Figure 21 $R_{L} = 50 \Omega$, $C_{L} = 35 pF$
ton ENABLE	23	30	31	ns typ	$R_L = 50.02$, $C_L = 55.0F$ $V_s = 1.5 V/0 V$; Figure 23
	-	50	51	ns max	-
t _{off} ENABLE	5 6	7	8	ns typ	$R_L = 50 \Omega, C_L = 35 pF$
Dual Defens Male Time Delay	-	/	8	ns max	$V_s = 1.5 V$; Figure 23
Break-Before-Make Time Delay (tввм)	20			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
(CBBM)			5	ns min	$V_{s1} = V_{s2} = 1.5 V$; Figure 22
Charge Injection	28		5	pC typ	$V_{s} = 1.5 \text{ V}, \text{ R}_{s} = 0 \Omega, \text{ C}_{L} = 1 \text{ nF}; \text{ Figure 24}$
Off Isolation	-67			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; Figure 25
Channel-to-Channel Crosstalk	-75			dB typ	$R_L = 50 \Omega_2$, $C_L = 5 \text{ pF}$, $f = 100 \text{ kHz}$; Figure 27 $R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, $f = 100 \text{ kHz}$; Figure 27
Total Harmonic Distortion (THD+N)	0.02			%	$R_L = 32 \Omega$, $f = 20$ Hz to 20 kHz, $V_S = 2$ V p-p
Insertion Loss	0.02			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 \text{ kHz}$
–3 dB Bandwidth	33			MHz typ	$R_L = 50 \Omega_2, C_L = 5 \text{ pF}; Figure 26$
Cs (OFF)	24			pF typ	$n_{\rm L} = 30.32$, $c_{\rm L} = 5$ pr, rigure 20
C _D (OFF)	105			pF typ	
C _D (OFF) C _D , C _s (ON)	103			pF typ	
POWER REQUIREMENTS	123			Pi typ	V _{DD} = 3.6 V
	0.003			μA typ	$V_{DD} = 3.6 V$ Digital inputs = 0 V or 3.6 V
יטטי	0.005	1.0	4	μΑ typ μΑ max	

 $^{^1}$ Temperature range, Y version: $-40^\circ C$ to $+125^\circ C.$ 2 Guaranteed by design, not subject to production test.

 $V_{\rm DD}$ = 2.5 V \pm 0.2 V, GND = 0 V, unless otherwise noted. 1

Table 2.

Parameter	+25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0 V to V_{DD}$	V	
On Resistance (R _{ON})	0.65			Ωtyp	$V_{DD} = 2.3 \text{ V}; V_S = 0 \text{ V} \text{ to } V_{DD}, I_S = 10 \text{ mA};$ Figure 18
	0.77	0.8	0.88	Ωmax	
On Resistance Match between	0.4			Ωtyp	$V_{DD} = 2.3 \text{ V}; \text{ V}_{\text{S}} = 0.7 \text{ V}; \text{ I}_{\text{S}} = 10 \text{ mA}$
Channels (ΔR _{ON})		0.08	0.085	Ωmax	
On Resistance Flatness (R _{FLAT(ON)})	0.16			Ωtyp	$V_{DD} = 2.3 \text{ V}; V_{S} = 0 \text{ V} \text{ to } V_{DD}; I_{S} = 10 \text{ mA}$
		0.23	0.24	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = 2.7 V$
Source Off Leakage Is (OFF)	±0.1			nA typ	$V_s = 0.6 V/2.4 V, V_D = 2.4 V/0.6 V;$ Figure 19
5	±1			nA max	
Drain Off Leakage I _D (OFF)	±0.1			nA typ	$V_{s} = 0.6/2.4 V$, $V_{D} = 2.4/0.6 V$; Figure 19
	±1			nA max	
Channel On Leakage I _D , Is (ON)	±0.1			nA typ	$V_{s} = V_{D} = 0.6 V \text{ or } 2.4 V;$ Figure 20
	±1			nA max	
DIGITAL INPUTS					
Input High Voltage, VINH			1.7	V min	
Input Low Voltage, VINL			0.7	V max	
Input Current I _{INL} or I _{INH}	0.005			μA typ	V _{IN} = V _{INI} or V _{INH}
			±0.1	µA max	
C _{IN} , Digital Input Capacitance	4			pF typ	
DYNAMIC CHARACTERISTICS ²				1 21	
	25			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	31	33	35	ns max	$V_s = 1.5 V/0 V;$ Figure 21
ton ENABLE	25			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	30	32	34	ns max	$V_s = 1.5 V/0 V$; Figure 22
	5		0.	ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	7	8	9	ns max	$V_s = 1.5 V;$ Figure 22
Break-Before-Make Time Delay (t _{BBM})	20	0	2	ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	20		5	ns min	$V_{s1} = V_{s2} = 1.5 V$; Figure 22
Charge Injection	20		5	pC typ	$V_{s} = 1.25 \text{ V}, \text{ R}_{s} = 0 \Omega, \text{ C}_{L} = 1 \text{ nF}; \text{ Figure 24}$
Off Isolation	-67			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; Figure 25
Channel-to-Channel Crosstalk	-75			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 \text{ kHz}$; Figure 27
Total Harmonic Distortion (THD $+$ N)	0.022			%	$R_L = 32 \Omega$, $f = 20 Hz$ to 20 kHz, $V_s = 1.5 V p-p$
Insertion Loss	-0.06			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$
–3 dB Bandwidth	33			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 26
C _s (OFF)	25			pF typ	n = 50 12, cl = 5 pr, rigule 20
C_{D} (OFF)	110			pF typ	
C_D (OFF) C_D , C_s (ON)	128			pF typ pF typ	
POWER REQUIREMENTS	120			prtyp	$V_{DD} = 2.7 \text{ V}$
	0.002				
l _{DD}	0.003	1	4	μA typ	Digital inputs = 0 V or 2.7 V
		1	4	μA max	<u> </u>

¹ Temperature range, Y version: -40°C to +125°C. ² Guaranteed by design, not subject to production test.

 $V_{\rm DD}$ = 1.65 V \pm 1.95 V, GND = 0 V, unless otherwise noted. 1

Table 3.

Parameter	+25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0 V to V_{DD}$	V	
On Resistance (R _{ON})	1			Ωtyp	$V_{DD} = 1.8 V$; $V_{s} = 0 V$ to V_{DD} , $I_{s} = 10 mA$
	1.4	2.2	2.2	Ω max	
	2.2	4	4	Ωmax	$V_{DD} = 1.65 \text{ V}, \text{ V}_{S} = 0 \text{ V} \text{ to } \text{ V}_{DD},$ Is = 10 mA; Figure 18
On Resistance Match between Channels (ΔR_{ON})	0.1			Ωtyp	$V_{DD} = 1.65 \text{ V}, V_S = 0.7 \text{ V}, I_S = 10 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = 1.95 V$
Source Off Leakage Is (OFF)	±0.1			nA typ	$V_{\rm S} = 0.6 \text{ V}/1.65 \text{ V}, V_{\rm D} = 1.65 \text{ V}/0.6 \text{ V};$
	±1			nA max	Figure 19
Drain Off Leakage I _D (OFF)	±0.1			nA typ	$V_{\rm S} = 0.6/1.65 \text{ V}, V_{\rm D} = 1.65/0.6 \text{ V};$
bruin on Leukage ib (orry	±0.1			nA max	Figure 19
Channel On Leakage I _D , I _s (ON)	±0.1				$V_{\rm s} = V_{\rm D} = 0.6$ V or 1.65 V; Figure 20
Channel On Leakage ID, IS (ON)				nA typ	$v_{\rm S} = v_{\rm D} = 0.6 \text{ v}$ or 1.65 v; Figure 20
	±1			nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			0.65 V _{DD}	V min	
Input Low Voltage, VINL			0.35 V _{DD}	V max	
Input Current I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
			±0.1	μA max	
C _{IN} , Digital Input Capacitance	4			pF typ	
DYNAMIC CHARACTERISTICS ²					
t transistion	32			ns typ	$R_{L} = 50 \Omega, C_{L} = 35 pF$
	40	42	44	ns max	Vs = 1.5 V/0 V; Figure 21
ton ENABLE	34			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	39	40	41	ns max	$V_s = 1.5 \Omega/0 V$; Figure 22
toff ENABLE	8			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	10	11	13	ns max	$V_s = 1.5 V;$ Figure 22
Break-Before-Make Time Delay (t _{BBM})	22		15	ns typ	$R_L = 50 \Omega, C_L = 35 pF$
Dieak-Deloie-Make Time Delay (UBBM)	22		F		$V_{s1} = V_{s2} = 1 V$; Figure 22
Channa Inia stian	12		5	ns min	u
Charge Injection	12			pC typ	$V_s = 1 V, R_s = 0 V, C_L = 1 nF;$ Figure 24
Off Isolation	-67			dB typ	$\label{eq:RL} \begin{split} R_L &= 50 \; \Omega, C_L = 5 \; pF, f = 100 \; kHz; \\ Figure \; 25 \end{split}$
Channel-to-Channel Crosstalk	-75			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$, Figure 27
Total Harmonic Distortion (THD + N))	0.14			%	$R_L = 32 \Omega$, f = 20 Hz to 20 kHz, V _s = 1.2 V p-p
Insertion Loss	0.08			dB typ	$R_{L} = 50 \Omega, C_{L} = 5 pF, f = 100 kHz$
–3 dB Bandwidth	30			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; Figure 26
C _s (OFF)	26			pF typ	
C _D (OFF)	115			pF typ	
C _D , C _s (ON)	130				
	130			pF typ	V 105V
POWER REQUIREMENTS	0.002				$V_{DD} = 1.95 V$
I _{DD}	0.003			μA typ	Digital inputs = 0 V or 1.95 V
		1.0	4	μA max	

 1 Temperature range, Y version: –40°C to +125°C. 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 4.

Parameter	Rating
V _{DD} to GND	–0.3 V to +4.6 V
Analog Inputs ¹	-0.3 V to V _{DD} + 0.3 V
Digital Inputs ¹	–0.3 V to +4.6 V or 10 mA, whichever occurs first
Peak Current, S or D	(Pulsed at 1 ms, 10% Duty Cycle Max)
3.3 V Operation	500 mA
2.5 V Operation	460 mA
1.8 V Operation	420 mA
Continuous Current, S or D	
3.3 V Operation	300 mA
2.5 V Operation	275 mA
1.8 V Operation	250 mA
Operating Temperature Range	
Automotive (Y Version)	–40°C to +125°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
MSOP Package	
θ_{JA} Thermal Impedance	206°C/W
θ_{JC} Thermal Impedance	44°C/W
IR Reflow, Peak Temperature <20 sec	235°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

Table 5. ADG804 Truth Table

A1	A0	EN	ON Switch
х	х	0	None
0	0	1	S1
0	1	1	52
1	0	1	S3
1	1	1	S4

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION

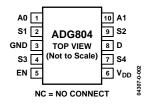


Figure 2. 10-Lead MSOP (RM-10)

Table 6. Terminology

V _{DD}	Most positive power supply potential.
DD	Positive supply current.
GND	Ground (0 V) reference.
S	Source terminal. May be an input or an output.
D	Drain terminal. May be an input or an output.
EN	Active high logic control input.
A0, A1	Logic control inputs. Used to select which source terminal, S1 to S4, is connected to the drain, D.
V _D , V _S	Analog voltage on terminals D, S.
Ron	Ohmic resistance between D and S.
RFLAT (ON)	Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.
ΔRon	On resistance match between any two channels.
Is (OFF)	Source leakage current with the switch off.
I⊳ (OFF)	Drain leakage current with the switch off.
I _D , I _S (ON)	Channel leakage current with the switch on.
VINL	Maximum input voltage for Logic 0.
VINH	Minimum input voltage for Logic 1.
I _{INL} (I _{INH})	Input current of the digital input.
Cs (OFF)	Off switch source capacitance. Measured with reference to ground.
C _D (OFF)	Off switch drain capacitance. Measured with reference to ground.
C _D , C _S (ON)	On switch capacitance. Measured with reference to ground.
C _{IN}	Digital input capacitance.
t _{on} (EN)	Delay time between the 50% and the 90% points of the digital input and switch on condition.
t _{OFF} (EN)	Delay time between the 50% and the 90% points of the digital input and switch off condition.
T TRANSITION	Delay time between the 50% and the 90% points of the digital input and switch on condition when switching from one address state to the other.
t _{BBM}	On or off time measured between the 80% points of both switches when switching from one to another.
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during on-off switching.
Off Isolation	A measure of unwanted signal coupling through an off switch.
Crosstalk	A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance
–3 dB Bandwidth	The frequency at which the output is attenuated by 3 dB.
On Response	The frequency response of the on switch.
Insertion Loss	The loss due to the on resistance of the switch.
THD + N	The ratio of the harmonic amplitudes plus noise of a signal to the fundamental.

TYPICAL PERFORMANCE CHARACTERISTICS

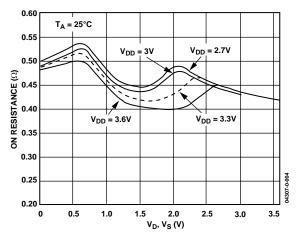


Figure 3. On Resistance vs. V_D (V_s) V_{DD} = 2.7 V to 3.6 V

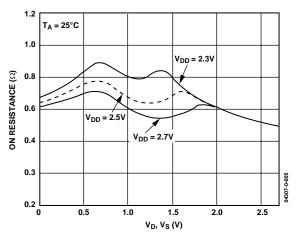


Figure 4. On Resistance vs. V_D (V_s) V_{DD} = 2.5 V ± 0.2 V

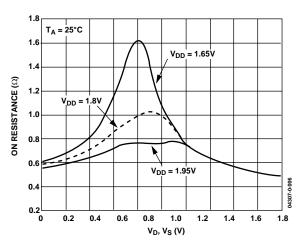


Figure 5. On Resistance vs. V_D (V_s) V_{DD} = 1.8 ± 0.15 V

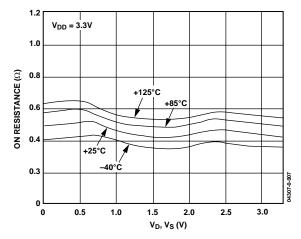


Figure 6. On Resistance vs. V_D (V_s) for Different Temperature, $V_{DD} = 3.3$ V

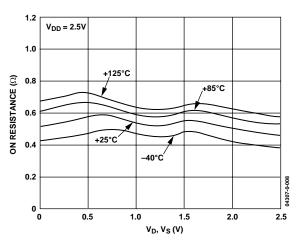


Figure 7. On Resistance vs. V_D (V_s) for Different Temperature, $V_{DD} = 2.5 V$

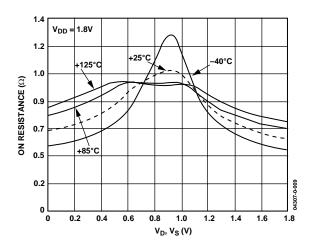


Figure 8. On Resistance vs. V_D (V_s) for Different Temperature, $V_{DD} = 1.8 V$

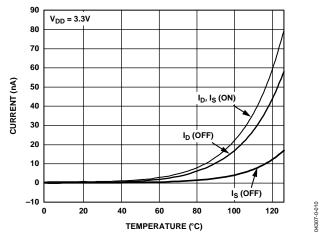


Figure 9. Leakage Current vs. Temperature, V_{DD} = 3.3 V

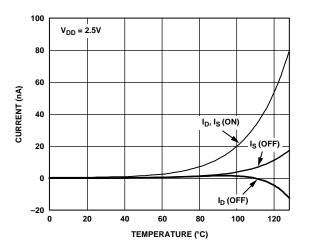


Figure 10. Leakage Current vs. Temperature, $V_{DD} = 2.5 V$

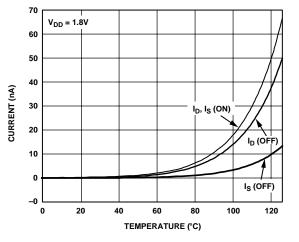


Figure 11. Leakage Current vs. Temperature, $V_{DD} = 1.8 V$

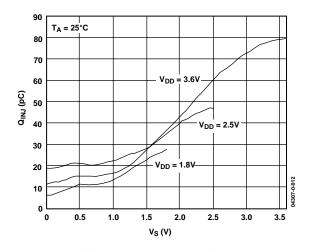


Figure 12. Charge Injection vs. Source Voltage, $V_{DD} = 1.8 V$

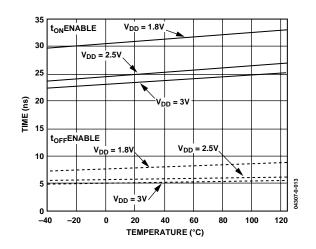


Figure 13. ton/toff Times vs. Temperature

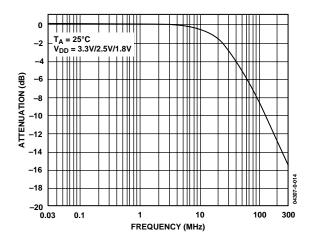
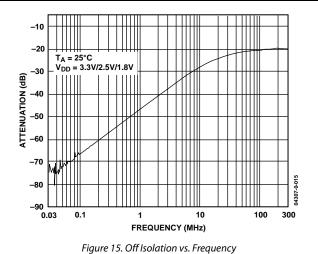



Figure 14. Bandwidth

04307-0-011

04307-0-017

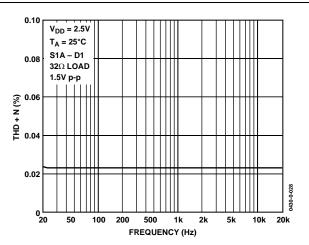


Figure 17. Total Harmonic Distortion + Noise

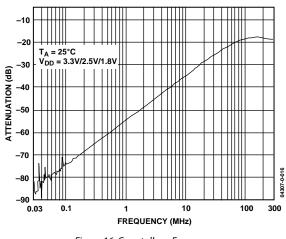
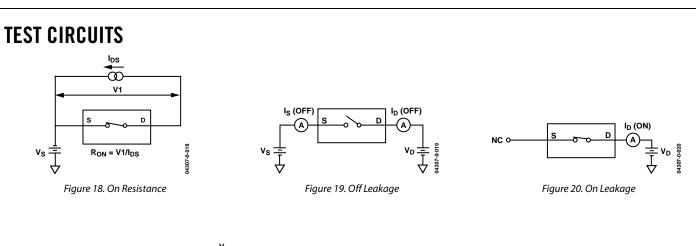



Figure 16. Crosstalk vs. Frequency

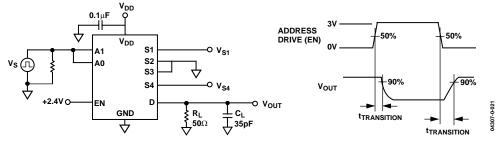


Figure 21. Switching Time of Multiplexer, t_{TRANSITION}

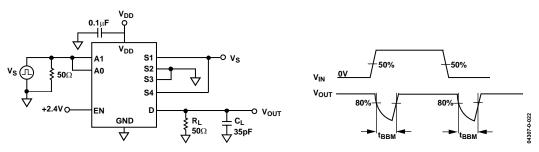


Figure 22. Break-Before-Make Time Delay, tBBM

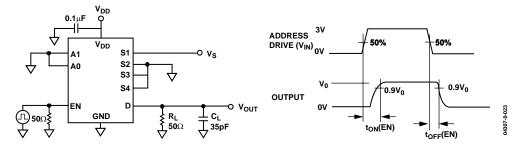


Figure 23. Enable Delay, ton(EN), toff(EN)

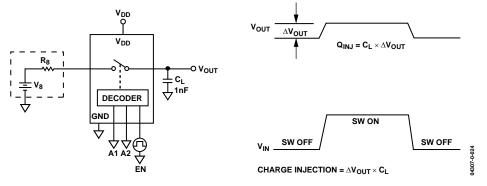


Figure 24. Charge Injection

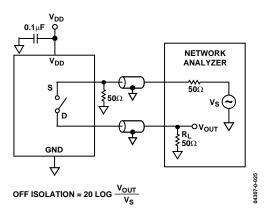


Figure 25. Off Isolation

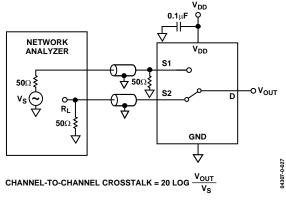


Figure 27. Channel-to-Channel Crosstalk

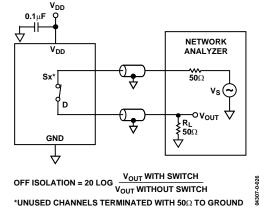


Figure 26. Bandwidth

OUTLINE DIMENSIONS

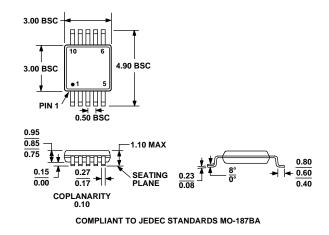


Figure 28. 10-Lead Mini Small Outline Package [MSOP] (RM-10) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding ¹
ADG804YRM	-40°C to +125°C	Mini Small Outline Package (MSOP)	RM-10	S1A
ADG804YRM-REEL	-40°C to +125°C	Mini Small Outline Package (MSOP)	RM-10	S1A
ADG804YRM-REEL7	-40°C to +125°C	Mini Small Outline Package (MSOP)	RM-10	S1A

¹ Branding on this package is limited to three characters due to space constraints.

NOTES

NOTES

NOTES

www.analog.com

© 2004 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D04307–0–4/04(0)

Rev. 0 | Page 16 of 16

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.